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A discrete procedure for solving integro-differential equations 

M R H Rudge 
Department of Applied Mathematics and Theoretical Physics, The Queen’s University of 
Belfast, Belfast BT7 INN,  UK 

Received 6 April 1989 

Abstract. A discrete procedure is described for solving coupled integro-differential 
equations. In particular, the method is applied to the close coupling equations that arise 
in scattering theory. It is found that the method converges rapidly provided that the number 
of linearly independent solutions does not exceed the number of equations. Typical results 
are shown as a function of the basis size. 

1. Introduction 

Various numerical techniques have been used to solve the close coupling equations 
that arise in scattering theory. A review of these has been presented by Burke and 
Seaton (1971) in which three main techniques are described for solving this set of 
coupled integro-differential equations. They are: 

(i)  step by step methods using finite difference formulae; 
(ii) using finite difference formulae to reduce the equations to algebraic equations; 
(iii) expanding the solution in terms of a set of basis states and solving for the 

coefficients-the R-matrix method. 
The alternative procedure described here is a type of collocation method in which 

the solutions are represented by an expansion and the equations are satisfied identically 
over a discrete set of points. This is equivalent to replacing a homogeneous set of 
equations by an inhomogeneous set in which one attempts to ensure that the right-hand 
side is small. The technique is similar to (iii) in that an expansion is used and similar 
to (ii) in that the problem reduces to solving linear equations. It has the advantage 
that, although it is necessary to evaluate the effect of the operator on the basis functions, 
it is not necessary to perform further analytic or numerical work other than solve linear 
equations. As is the case with the R-matrix method, one calculation suffices to obtain 
results over a range of energies. 

2. The close coupling equations 

The close coupling equations for e--H scattering have been described by Percival and 
Seaton (1957). Subsequently Norcross (1969) modified the formulation to include 
orthogonality conditions designed to overcome numerical instability. A variety of 
different orthogonality schemes are discussed in the review by Burke and Seaton (1971). 
The aim of these procedures is to define the scattering functions uniquely, and to this 
end inhomogeneous Lagrange terms are introduced. The equations are rederived here 
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from a slightly different viewpoint to show how the trivial solutions for the wavefunction 
have been eliminated by modifying the exchange kernel. The convergence of the 
method used was found to be adversely affected if these solutions are not eliminated. 

In the usual way let the wavefunction Y for the e--H system be represented as 

Y(ri, r2)=(rir2)-'(1+(-1)s~12) C ~ ( f i f 2 ~ I i i i 2 ) p n i , ( r i ) ~ , i l i > ( r 2 )  (1) 
n'i ,  i,r 

where S is the total electronic spin and the dependence of F on L and S is suppressed: 
y denotes coupled spherical harmonics, the P#r,( r l )  are the radial hydrogen eigenfunc- 
tions, and the Ffijlj,(r2) are the scattering functions that must be determined. Let 2 
be the Hamiltonian and E the total energy. If we impose the condition that 

b* ( 11 Llil i 2 )  r ; ' pn/, ( rl) [ Y-t - E I W )  ,, ?, = 0 (2) 

then we obtain coupled integro-differential equations of the form 

In (2) and (3), ( ) denotes integration over the entire physical range of the variables 
which are denoted by subscripts. The infinite set of coupled integro-differential 
equations (3)  must be truncated to say N equations and the Fn, l /2 ( r2 )  can be taken to 
be the elements of an N-dimensional vector f: This vector satisfies the boundary 
condition f(0) = 0 and the truncated equations (3) can be written in matrix form as 

f"+Vf+(W(r, ,  rl)f(r , ) )q =0. (4) 

These are the equations derived by Percival and Seaton (1957), who give expressions 
for the potential V and the kernel W which satisfy the symmetry conditions 

f = V  w 2 ,  r , )  = W(r1, rz) ( 5 )  

where the tilde denotes transposition. 
If there were no integral terms in (4) then there would exist N linearly independent 

solution vectors f: However, (4) contains additional unwanted solutions that corre- 
spond to a trivial solution for 9. These solutions must be eliminated and to See how 
they arise the expansion (1) can be rewritten 

where 

( r = L + S + T 1 + I 2 .  

Fii i l i2(r2) = E  (~Xi~pn*i , ( r2)  (7)  

Following Norcross (1969), it follows from (6) that the linear combination 

n' 

gives a trivial solution for Y if 

This is the case if 
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Let T"'(r) denote all the solution vectors that correspond in this way to a trivial 
solution. For example, in a two-state expansion in which L = 0, S = 1 and n = 1 or 2 
there are three such vectors: 

Each of the T'J' satisfies (4) because it corresponds to the solution 
they are orthogonal. 

( r l ,  r2 )  = 0, and 

Let WO be another kernel and let g be any column vector that satisfies the equations 

g"+Vg + (Wo(r*, rl)g(rl)), = 0. (10) 

which can be written 

So the solution of (10) is orthogonal to the vectors T(J'  if WO is chosen according to 
(13). What has been proved in effect is that removing from (4) any multiple of the 
terms that would be zero i f f  were orthogonal to the vectors T") ensures that the 
resulting solutions are indeed orthogonal to them. 

It can be shown using (14) that for large r2 the non-exponential solutions of (4) 
and the solutions of (10) are the same. Equations (10) have only N linearly independent 
solutions which comprise a square matrix F. The final equations to be solved are 
therefore 

F"+ VF + (WO( r2, rl)F( rl ) ) r l  = 0 

W0(r2,  r 1 ) = W ( r 2 ,  r l ) + C P J A ' J '  (16) 

(h(J')kl = ~ k ~ [ T ' J ' ( r l ) ~ ( ' ) ( r , ) ] ~ r .  (17) 

(15) 

where 

I 

the PI are any constants and 

The problem of trivial solutions for 9 can thus be eliminated by redefining the exchange 
kernel W. 
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3. The numerical procedure 

For large values of r, r > Ro say, there are a numher of techniques whereby the equations 
(15) can be solved. The method to be used in these calculations is that of Rudge (1984, 
1985). The problem is therefore to solve (15) in the range 0 6 r 6 Ro subject to the 
boundary condition 

F(0) = 0. (18) 

(19) 

As a consequence of this it follows that 
I - 1  T [p(F’)-l Ir=~,= [p(F ) l r = R o  

where the superscript T denotes transposition. 
In practice it is inconvenient to apply the boundary condition (18) at r = 0. This 

is because N linearly independent sets of derivatives are needed to generate the N 
linearly independent solutions and some or all of these derivatives can vanish at r = 0 
also. If the boundary condition is shifted to r = E, say, then (19) is guaranteed if 

CF’le = i’FIE. (20) 
It is then possible to choose for example 

F(E) = e l  F’( E )  = I 

and for small enough E (21) implies that F(0) = 0. However, it is possible, especially 
if there are closed channels, for the condition (21) to generate solutions in which one 
component of the solution vector is much larger than the others. In order to avoid 
this it is preferable to first solve the equations as a two-point boundary value problem 

F(E) = E I  F( R,)  = I (22) 
which ensures that all the solutions are of a similar size at r = Ro, but does not imply 
the necesary condition (19). From the solution FcaIc with the boundary condition (22) 
we can evaluate FLalc(&). The calculation can then be repeated with the one-point 
boundary condition 

F(E) = EI ~ ‘ ( 8 )  =f[FLalc(E)+ i ~ a l c ( ~ ) ~ *  (23) 
For significant Z2 values a better choice of F(E) is 

[ F ( E ) ] ~  = Si,~’j+’ 

where I ,  is the l2 value for channel j ,  and the appropriate choice of F’(E) is 

F’(E) =f[FLa,c+ (F-’)’(FL~I~)~FIE. (25) 
Now let (4,) (1 6 m d M )  be any linearly independent set of basis functions, and 

where I is the N x N unit matrix. We represent F in the form let @, = 

M 
F =  @,A,. 

m = l  

In order to do this we choose the A,,, in such a way that the equations (15) are satisfied 
identically at a discrete set of points. Let { rm} (1 6 m s M )  be this set of points where 
rl = E, rM = R,.  

Let X denote a matrix that contains M x M blocks of N x N matrices X“. Then 

( W r s  = o(po),, (27) 
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where 

r =  ( P - l ) N + p  1sPsM 

s = ( Q -  1)N+ 9 1 S Q S M .  

Writing equation (15) as 

g F = O  

we define 

xp0 = Lt’@Q(rp-l)  3sPsM (29) 

xIQ = aQ( r l )  (30) 

x2Q = @,b( 11) or @Q(RO) (31) 

where in (31) the first choice occurs for the boundary condition (21) and the second 
for the boundary condition (22). 

If A is the matrix with 

A‘’ =Ap (32) 

X A = Z  (33) 

then the equations to be solved are 

4343 

(28) 

where 

2” = F ( E )  

2’’ = F ’ ( E )  (boundary condition (21)) (34) 

F(Ro) (boundary condition (22)) 

The potential matrix V and the exchange kernel W can be written 
and all other blocks are zero. 

V = Vo + 2 E I W = WO+ 2 E W1 (35) 
and so correspondingly 

X=Xo+2EXl  

= Xo(l + 2ESDS-’) 

where 

SDS-’ = Xi ’X , .  

It follows that 

A =  S(I+2ED)-’(XoS)-’Z (37) 
and so by diagonalising XOIXl the A matrix can be found for a range of values E. 

4. Calculations 

Test runs have been carried out using a basis of Chebyshev polynomials 

4 m  = T m - l ( x )  l s m a M  (38) 
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where x = ( 2 r  - R , ) / R ,  and where the r,  ( 2  S m S M - 1) are the zeros of T M - 2 .  The 
equations (15) are thus replaced by the equations 

9 F  =A(  r )  T,-,(X) (39) 

where A( r )  is an amplitude function that can be computed. The solutions are accurate 
if A ( r )  is small. 

Table 1. Computed one-channel phase shifts v ( S ) ;  R, = 20.0. 

0.1 1.488 2.453 1.460 2.423 1.460 2.427 1.460 2.427 1.460 2.427 
0.3 0.933 1.977 0.944 1.985 0.945 1.985 0.946 1.985 0.946 1.985 
0.5 0.685 1.727 0.734 1.735 0.736 1.734 0.736 1.734 0.736 1.734 
0.7 0.683 1.635 0.626 1.570 0.619 1.563 0.620 1.563 0.620 1.563 
0.9 0.627 0.893 0.582 1.366 0.561 1.438 0.560 1.440 0.560 1.440 

Table 2. K-matrix elements Is, 2s expansion. 

M = 1 4  M = 1 6  M = 1 8  M = 20 
k2 Elements S=O S = l  S=O S = l  S=O S = l  S=O S = l  

~~~ ~ 

0.5 K,,  0.967 -5.15 0.934 -5.26 0.957 -5.25 0.957 -5.23 

1.0 K , ,  0.478 3.43 0.583 5.38 0.589 -5.61 0.540 5.62 
K12 0.379 0.105 0.450 0.156 0.454 0.162 0.454 0.162 
K22 -0.807 0.041 -0.798 0.043 -0.798 0.043 -0.798 0.043 

1.25 K, ,  -0.0129 -5.25 0.386 4.25 0.421 3.35 0.422 3.32 
K,, 0.795 -0.299 0.591 0.225 0.566 0.180 0.565 0.179 
K22 -0.945 -0.609 -1.16 -0.589 -1.19 -0.591 -1.19 -0.591 

Table 3. K-matrix elements Is, 2s,2p expansion. 

M = 1 6  M = 1 8  M = 2 0  
k2 Elements s=o S = l  s=o s = 1  s=o s= 1 

0.81 K, 1 0.791 5.98 0.822 6.81 0.824 6.60 
Kl 2 -0.256 2.96 -0.253 3.98 -0.253 3.89 
K13 0.591 - 1.67 0.585 -2.24 0.584 -2.19 
K22 - 1.049 14.6 - 1.05 15.4 -1.051 15.4 
K23 1.033 -9.00 1.04 -9.41 1.04 -9.45 
K3 3 0.596 5.42 0.584 5.70 0.584 5.67 

1.21 Kl I 0.137 0.934 0.148 3.63 0.143 3.78 
Kl, 0.275 0.212 0.467 0.447 0.506 0.523 
K13 0.879 -0.081 1.505 -0.166 1.63 -0.194 
K2, 0.125 1.03 0.148 1.04 0.153 1.05 
K23 -0.615 -1.49 -0.551 - 1.49 -0.534 - 1.49 
K33 -6.18 0.705 -5.97 0.708 -5.91 0.709 
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In table 1 the computed phase shifts are shown for a one-channel expansion as a 
function of M. In tables 2 and 3 results are shown respectively for a two-state and a 
three-state calculation. In each case acceptable accuracy is attained at the energies 
shown with quite a small basis size. 

5. Conclusions 

A collocation procedure has been applied to the solution of a complicated set of 
coupled integro-differential equations that arise in scattering theory. This procedure 
in which the equations are satisfied identically over a discrete set of points has been 
shown to be simple and accurate. A Chebyshev basis was used, calculations using a 
Legendre basis were found to have very similar convergence properties. At higher 
energies than those examined here the solutions oscillate more rapidly and a different 
basis would then be appropriate. An attractive feature of the method is that it only 
requires the effect of the operator on the basis functions over a discrete set of points 
while variational methods, for example, require the more difficult evaluation of inner 
products. 
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